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1 Fundamental Solutions for PDEs in 2 Dimensions and for
the Laplacian

1.1 Fundamental solutions in 1 and 2 dimensions

Last time, we discussed fundamental solutions for partial differential equations. Suppose
we have a differential operator in 1 dimension

P (∂)K = δ0.

Solve the homogeneous equation and look for the fundamental solution

K(x) =

{
uhom

1 (x) x < 0

uhom
2 (x) x > 0.

Plug this in into P (∂)K = δ0 and get a linear system for the constants. As an exercise,
try to solve the equation with the operator P (∂) = ∂2 − 1.1

What about in 2 dimensions? In complex analysis, one way to specify whether a
function is holomorphic is via the Cauchy-Riemann equations. If our coordinates are (x, y),
then let z = x+ iy.

Definition 1.1. A function f : R2 → C is holomorphic if

(∂x + i∂y)f = 0.

If we write f = u + iv, we can express this as equations for the real and imaginary
parts: {

∂xu− ∂yv = 0

∂yu+ ∂xv = 0.

1Last week, this was a midterm question for Professor Tataru’s undergraduate class.
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These are the Cauchy-Riemann equations. From the perspective of PDEs, this is just
one equation.

Denote the operator
∂ = ∂x + i∂y.

Sometimes people will use this notation to denote 1/2 this quantity. Complex differentia-
tion is given by the operator

∂ = ∂x − i∂y.

Our goal is to find the fundamental solution for ∂.
Looking at ∂K = δ0, notice that δ0 is homogeneous of order −2 and ∂ reduces order of

homogeneity by 1. So we should look for a K which is homogeneous of order −1. Away
from z = 0, ∂K = 0, so K is holomorphic. So we should look for K of the form K = c

z ,
where c is a constant. This is locally integrable, unlike in 1 dimension. So we can define

K(φ) = c

∫
R2

φ(z)

z
dx dy,

where we can use dz dz instead of dx dy. If K is a fundamental solution, ∂K = δ0, so
∂K(φ) = φ(0), which gives K(−∂φ) = φ(0). Here,

K(−∂φ) = −c
∫∫

R2

(∂x + i∂y)φ(z)

z
dx dy

= lim
ε→0
−c
∫∫

R2\Bε

(∂x + i∂y)φ ·
1

z
dx dy

We want to use integration by parts. Using Green’s theorem,

= lim
ε→0

c

∫∫
R2\Bε

φ · (∂x + i∂y)
1

z︸ ︷︷ ︸
=0

dx dy − c
∫
∂Bε

(νx + iνy)φ ·
1

z
ds,

where ν is the inner normal vector to the boundary of Bε. In particular, ν = − (x,y)
|z| .

= lim
ε→0

c

∫
∂Bε

z

|z|
φ · 1

z
ds

= lim
ε→0

c

ε

∫
∂Bε

φ(z) dz

= 2πcφ(0).

We want 2πc = 1, so we should pick c = 1
2π . Thus, our fundamental solution is

K(z) =
1

2πz
.
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Remark 1.1. We can rewrite this line integral in a complex fashion, as∫
φ(z)

z
dz = 2πiφ(0),

by the residue theorem. So we have recovered the residue theorem. In essence, the residue
theorem is the analogue of the fundamental theorem of calculus for 2 dimensions.

1.2 Fundamental solution for the Laplacian

Our next exercise is to find the fundamental solution to P (∂) = −∆, where

∆ = ∂2
1 + · · ·+ ∂2

n.

Since δ0 is homogeneous of order −n, and P (∂) will decrease the order of homogeneity by
2, K should be homogeneous of order 2 − n. To look for a candidate for a solution, we
should look at the symmetries of ∆, in particular invariance with respect to rotations.

If y = Ax is a linear change of variables, then ∂
∂xi

= Ai,j
∂
∂yj

. Then ∆ = Ai,jAi,k
∂
∂yj

∂
∂yk

.

Here, we are using Einstein summation notation, in which the sum is implicit but unwritten.
Do we get back ∆ in y? The answer is yes, if

Ai,jAi,k = In ⇐⇒ A>A = I.

That is, we want A to be orthogonal. Recall that if A is orthogonal,

‖Ax‖2 = 〈Ax,Ax〉
= 〈x,A>Ax〉
= 〈x, x〉
= ‖x‖2.

So we can look for K which is invariant with respect to rigid rotations, i.e. K is a spherically
symmetric distribution.

Remark 1.2. We must be careful with this line of reasoning. We are just hoping that
there exists some fundamental solution with this property. Not all fundamental solutions
will have this property. For example, if we add x1 to K, we will still have a fundamental
solution, but it will not be radial.

We will guess

K = cn ·
1

|x|n−2
,

where we will set the case n = 2 dimensions aside for now. Observe that

−∆K = δ0 ⇐⇒ −∆K(φ) = φ(0)
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⇐⇒ K(−∆φ) = φ(0)

⇐⇒
∫
Rn

−∆φ
1

|x|n−2
dx = φ(0).

As before, write this integral as

lim
ε→0

∫
Rn\Bε

−∆φ · 1

|x|n−2
.

We want to integrate by parts. Here is Green’s theorem in this setting:

Theorem 1.1 (Green’s theorem for the Laplacian).∫
Ω

∆u · v − u ·∆v dx =

∫
∂Ω

∂u

∂ν
v − u∂v

∂ν
dσ.

Proof. ∫
Ω

∆u · v dx =

∫
Ω
∂j∂ju · v

= −
∫

Ω
∂ju · ∂jv dx+

∫
∂Ω
νj∂ju · v dσ,

where σ is surface measure on ∂Ω. Observe (for the future) that ∂ju · ∂jv = ∇u ·∇v in the
first term and νj∂ju = ν · ∇u := ∂u

∂ν is the normal derivative in the second term.

=

∫
Ω
u · ∂j∂j︸︷︷︸

∆

v +

∫
∂Ω

∂u

∂ν
v − u∂v

∂ν
dσ.

Returning to our computation, we want

φ(0) = lim
ε→0

∫
Rn\Bε

φ

(
−∆

1

|x|n−2

)
dx−

∫
∂Bε

∂φ

∂ν
· 1

|x|n−2
− φ ∂

∂ν

1

|x|n−2
dσ

The first integral goes away because −∆ 1
|x|n−2 = 0. We can see this via a formula for

the Laplacian on radial functions: ∆F (r) = (∂2
r + n−1

r ∂r)F (r). This is the chain rule,
switching to polar coordinates in n dimensions.

The second integral is ∫
∂Bε

∂φ

∂ν
· 1

|x|n−2
dA = O(ε)→ 0,

as ∂φ
∂ν is bounded, 1

|x|n−2 = ε2−n, and dA has order εn−1.

The third integral is∫
∂Bε

φ · ∂
∂ν

1

|x|n−2
dν =

∫
∂Bε

φ · (n− 2)
1

|x|n−1
dσ
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≈ φ(0) · n− 2

εn−1
εn−1an,

where an is the area of the unit sphere.

= (n− 2)anφ(0).

So we need

c = cn =
1

(n− 2)an
.

Theorem 1.2. If n ≥ 3, then the fundamental solution for −∆ is

K(x) =
1

(n− 2)an
· 1

|x|n−2
,

where an is the area of the unit sphere.

Returning to the 2 dimensional case, we want K = K(r), and outside K = 0, we want

(∂2
r +

1

r
∂r)K = 0.

We can write this as

(∂r +
1

r
) (∂rK)︸ ︷︷ ︸

L

= 0.

This tells us that
L′

L
= −1

r
,

so
logL = − log r + c,

which we can write as

L = c · 1

r
.

Substituting back in for K, we have ∂rK = c
r , which tells us that

K = c ln r + d,

where d is a constant that we can choose to fit our problem.
What is the constant c? Instead of a computation, we’ll do some carefully selected

handwaving. Note that
∂

∂ν
log r = −1

r
,

so there is no n − 2. We get the last line of the higher-dimensional computation, but
without the n− 2:

c =
1

a2
=

1

2π
.
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So

K(x) =
1

2π
ln r,

where we can add a constant if we wish.

Remark 1.3. If we think of the Laplacian in 2 dimensions as ∆ = ∂∂, then the fundamental
solutions follow

K−∆ = K∂ ∗K∂ =
1

z
∗ 1

z
.

We get a divergent integral, but with a proper renormalization, we can make sense of this.
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